
Finding Near-Min Cuts

Kevin Wood kwood@nps.navy.mil

Operations Research Department
Naval Postgraduate School

Oct 2002

2

Purpose of this talk

■ Describe an algorithm to enumerate all
s-t cuts in a directed network whose
capacity is within 1+ε of being optimal
for ε ≥ 0. (“near-min cuts”)

■ Prove that the run time is polynomial
per cut enumerated when ε = 0.

■ Prove that it is polynomial for certain
graph topologies .

3

A Network Interdiction Problem

■ Given network G=(N,A) and resource rk
required to “destroy” k=(i,j), find the
minimum total resource required to cut
all comm between nodes s and t .

■ Simple solution via the max-flow min-
cut theorem:

Set resources as arc capacities, find
max flow and min capacity cut.

4

Max-flow, min-cut

(With multiple solutions)

s t

1

1

1 2

1

2

5

One min cut easy to find, but…

■ There may be secondary
considerations, e.g., collateral
damage, logical constraints

■ So, find all min cuts and evaluate
against other relevant criteria

■ How to enumerate?
– Brute force: Enumerate all cuts
– Some theoretical work in literature
– Practical: Norm Curet, Applied Math, NSA

6

The next refinement

■ Allow near-optimal solutions, i.e.,
accept near-min cuts.

■ Can still enumerate all cuts!
■ Some graph theoretical work.

Ramanathan and Colbourn (1987),
Vazirani and Yannakakis (1997)
enumerate cutsets

■ Two Masters theses at NPS.

7

Our partitioning scheme

s t

d,1

a,1
f,2

c,1

g,2
b,1

Backtrack if +1 tolerance exceeded

g,b,d

a,b,c

a,f,d

a,b,d g,b,ca,c,f

a,b,c

a,ba,b,c

a

d f,c f g,b,c
g,b

g

d d

8

Forcing arcs in and out of cuts

■ To ensure that a given arc k is
excluded from all cuts below a given
tree node, set uk = ∞

■ To ensure inclusion of k = (i,j), add (s,i)
and (j,t) with capacities of ∞ (treat i as
an extra source and j as an extra sink)

■ Exclusion always works; inclusion can
introduce new “pseudo-minimal” cuts

■ Just keep track of AIN and AOUT

9

Force inclusion of arc k4 = (u,v)

u

s t

k3 , 2

v

k1,2 k8 , 1

k7 ,2
k6 , 1

k2 , 1
k5 , 1

k4 , 1

∞

∞

Actually, just treat u as a new
source and v as a new sink.

10

Creating pseudo-minimal cuts

u

s t

k3 , 2

v

k1,2 k8 , 1

k7 , 2
k6 , 1

k2 , 1
k5 , 1

k4 , 3

∞

{k1, k2, k8} is a pseudo-minimal cut

11

An Algorithm

MAIN
Input: G =(N,A), u, ε, s, t /* Global */
Output: All cuts with cap. ≤ (1 + ε) zmin

{
(zmin, AC) ← Maxflow (G, {s}, {t}, u);
/* zmin is also global */
AIN ← Ø; AOUT ← Ø;
Enumerate(AIN, AOUT);

}

12

Algorithm: recursive routine

Enumerate(AIN, AOUT)
{ u´ ← u; uk ← ∞ ∀k∈AOUT;

S ← {s}+{i|(i,j)∈AIN; T ← {t}+{j|(i,j)∈ AIN;
(z′, AC) ← Maxflow (G, S, T, u´);
If (z′> (1 + ε)×zmin) return;
If(AC is minimal) Print (z′, AC);
For (each k ∈ AC− AIN){

AOUT ← AOUT+{k};
Enumerate(AIN, AOUT);
AOUT ← AOUT −{k}; AIN ← AIN +{k};

}
return;

}

13

An Example

s t

d,1

a,1
f,2

c,1

g,2
b,1

Backtrack if +1 tolerance exceeded

g,b,d

a,b,c

a,f,d

a,b,d g,b,ca,c,f

a,ba,b,c

a

d f,c f g,b,c
g,b

g

d d

Details on a chalkboard!

14

Algorithm: Notes

■ Actual implementation more efficient
■ Max-flows not solved from scratch;

use a flow-augmenting path algorithm
■ Pre-emptive backtracking from within

Maxflow allowed
■ Work per iteration O(|A|) for finding

min cuts; “usually” O(|A|) anyway?
■ Testing for non-minimal cuts O(|A|)

15

Algorithm: Thm 1 (it works!)

■ Theorem 1: The algorithm
enumerates all near-min cuts.

Proof: Simple partitioning and
enumeration argument. QED

Let C denote the set of near-min cuts and let MF

denote time for max flow
Note: The enumeration tree has only

“productive tree nodes” (near-min cuts) or
“unproductive tree nodes”

16

Algorithm: Thm 2 (efficiency)

■ Theorem 2: Run time is
O(|A||N||C|+MF) for finding min cuts
AC (with pre-emptive backtracking).
Proof: Initial cut found in O(MF) time.
A new min cut is generated & proven
min in two O(|A|) flow augmentations,
or pre-emptive backtracking occurs.
There are at most |N| dead tree nodes
for each productive node and
|Productive nodes|=|C|. QED

17

Algorithm: Thm 3 (efficiency)

■ Theorem 3: (ε > 0) Run time is
O(|A||N||C|+MF) for finding near-min
cuts AC when zminε < umin.

Proof: Same as previous proof,
essentially, because any cut with
capacity zmin(1+ε) must be minimal:
The smallest capacity a non-min’l cut
can have is zmin+umin > zmin(1+ε), so any
non-min’l cut causes a backtrack. QED

18

Algorithm: Thm 4 (efficiency)

■ Theorem 3: Run time is O(|N||C| MF)
for finding near-min cuts if all arcs of
the form (s,v) and (v,t) exist.
Proof: Quasi-inclusion does not
change the connectivity of G under
these conditions. Every cut found is
minimal. Each productive node in the
enumeration tree has at most |N|-1
nonproductive children. QED

■ Corollary 1: Run time is O(|N||C| MF)
for finding near-min cuts in complete
graphs.

19

Algorithm: General Efficiency

■ My guess: Difficult
■ Problematic examples exist. Non-

minimal cuts can be produced when
forcing arcs in

■ Finding a minimal cut that includes
certain arcs and excludes others is an
NP-complete problem

■ There is room for improved efficiency
by identifying “non-forceinable arcs”!

20

Enhancements and results

■ Don’t solve max flows from scratch
■ Results: 733 MHz Pentium III in Java
■ Only results for grid networks here,

with ck = 1
■ All 249 min cuts in a 25 by 250 grid

(|N|=6,252, |A|=24,500) in 18 seconds
■ All 431,728 near-min cuts (ε = 0.15) in a

25 by 25 grid in 973 seconds (253 non-
minimal cuts encountered)

21

Further research

■ Find more classes of graphs that admit
efficient solutions

■ Add tests for “edge domination” to
eliminate certain edges from possible
quasi-inclusion

■ Using the basic algorithm in a
“network diversion problem”: Find a
min-weight, minimal cut that contains
a given edge

